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ON THE OPT3I4UM TRANSVESAL CONTOt

OF A B3D! AT HYPERSCaIC SPMS(*)

by

ANGEl MIELE (**) and GARY R. SAARIS(*

SUMMARY

This paper refers to a body whose length and bas area are given and

considers the problem of determining the transversal contour which mini-

mizes the total drag (swm of the pressure drag and the friction drag) under

the following assumptions: (a) the body is slender in the longitudinal

sense; (b) the longitudinal contour is represented by a power law; (c) the

distribution of pressure coefficients obeys Newton's impact law; and (d) the

distribution of skin-friction coefficients versus the abscissa is repre-

sented by a power law. The indirect methods of the Calculus of Variations

are employed and attention is focused first on a class of arcs composed of

n symmetric cycles each covering the angular interval 2W/n (or 2n segments

each covering the angular interval w/n) and, then, on the more general came

where these symmetry and multiplicity properties are not employed. It is

(This report supersedes the reports entitled "A Study of the Optimum
Transversal Contour of a Body at Hyperoonic Speeds Using Indirect Methods,
Part I" and "A Study of the Optimum Transversal Contour of a Body at Hyper-
sonic Speeds Using Indirect Methods, Part III'.

(**)Director of Astrodynamics and Flight Mechanics, Boeing Scientific

Research Laboratories.

( )Staff Associate, Boeing Scientific Research Laboratories.
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shown that the extremal configuration depends strongly on the friction pa-

rameter, a parameter which is proportional to the ratio of the cubic root

of the average friction coefficient to the average thickness ratio.

Two distinct behaviors are possible depending on whether the friction

parameter is supercritical (Kf > 1) or subcritical (Kf < 1). If the fric-

tion parameter is supercritical, the extremal solution is of class I (a circle),

and the friction drag accounts for more than two-thirds of the total drag.

If the friction parameter is subcritical, the extremal solution is of either

class II (any combination of straight-line 3egments tangent to a basic circle

whose radius depends on the length, the base area, the average friction co-

efficient, and the exponents defining the longitudinal contour and the dis-

tribution of skin-friction coefficients) or class III (any combination of

circular arcs of radius equal to that of the basic circle and straight-

line segments tangent to the circular arcs); furthermore, the friction drag

is two-thirds of the total drag. Among the solutions of class II and

class III, a particular set is represented by starlike configurations and

a further subset by regular polygons.

While the solution is unique in the supercritical case, it is not unique

in the subcritical case. More specifically, for each given subcritical

friction parameter, an infinite number of equal-drag solutions exist which

minimize the drag. For the particular set of starlike configurations, each

solution corresponds to a different number of cycLes; however, the solution

becomes unique if one further constraint is imposed on the problem, such as,

the inner radius for bodies of class II and the outer radius for bodies of

class III.
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Comparison of the drag of extremal solutions with that of bodies of

revolution shows that the relative difference is negligible for those sub-

critical values of the friction parameter which approach one but is ap-

preciable for those values which approach zero. As an example, the extremal

configuration exhibits 5% less drag than the body of revolution having equal

length and base area for Kf n 0.8, 25% less drag for Kf 0 O.6, and 57% less

drag for Kf a 0.4.

I
I
I
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le INTODUCTION

In a previous paper (Ref. 1), the transversal contour of a slender

body of given length and base area was determined in such a way that the

total drag (sum of the pressure drag and the friction drag) is a minimum.

Direct methods were employed, and the analysis was confined to a body whose

cross section is either a regular polygon or is composed of a basic circle

external to which are superimposed symmetric segments of a logarithmic

spiral. In this paper, these arbitrary limitations on the transversal con-

tour are removed, and the minimum drag problem is investigated with the in-

direct methods of the Calculus of Variations. The following basic hypotheses

are employed: (a) the body is slender in the longitudinal sense; (b) its

longitudinal contour is represented by a power law; (c) the distribution of

pressure coefficients is Newtonian; and (d) the distribution of skin fric-

tion coefficients versus the abscissa is represented by a power law. I
i
I



2. DETERMINATION OF THE DRAG

Consider two systems of coordinates (Fig. 1): a Cartesian coordinate

system x, y, z and a cylindrical coordinate system r, e, s. With regard

to the Cartesian coordinate system, the z-axis in identical with the un-

disturbed flow direction, and the xy-plane in perpendicular to the z-axis.

For the cylindrical coordinate system, r is the distance of any point from

the z-axis, and 0 measures the angular position of this point with respect

to the zx-plane. Next, denote by U rt it0. uz the unit vectors of the cy-

lindrical coordinate system, and observe that the direction of uz is the

same as the undisturbed flow direction. Also, denote by n the unit vector

normal to the infinitesimal element of wetted area dSw, positively oriented

outward, and by t the unit vector which is tangent to dS and is in the

direction of the local flow after impact. Consequently, the aerodynamic

drag per unit dynamic pressure is given byI

D .ff [_ C nu+ Cft u5 ]dS()

w

where

0 -2 (2)

is the pressure coefficient associated with Newton's impact law and Cf is

the friction coefficient. After it is assumed that the tangent vector is
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contained in the plane of the vectors n, uz and it is observed that

T -ui - I; x Zi5I
(3)

dS U -- E- dO dz
r

the aerodynamic drag can be rewritten in the form

; f 7 fL [- 2(i. ;ý)3+ Cf rxu;;z de dz (4i)

I

where I is the length of the body. If the geometry of the body in described

by the equation 1

f(r, S, z) 0 0

the unit normal vector and the gradient of the function f satisfy the re- I
lationship

f i + (f/r ef + u
7 r r -- - (6)

IhhrI [f2 + (fe2 t2

which implies that
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f
z

z* ~ + (f /r) 2 + f2]112z

x + ~(f /r)2(7

f

- - r

"r n

r (f /r) 2 +

Consequently, Eqs. (4) and (7) lead to the following relationship between

the aerodynamic drag per unit dynamic pressure and the geometry of the body:

I

2 2f2

D f r z 2 ÷ f / ) O d 8

which, because of the slender body approximation (f /f)2 << 1, reduces to

D f 2If I [ 2f _7 + Cf + (f/r)2] dS dz (9)
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Because of hypothesis (b), the longitudinal contour of the body is

represented by the power law

f(r, 0, z) r - (0) R(0) - 0 (10)

where m is an arbitrarily prescribed exponent and R(0) is a function which

describes the geometry of the base contour (Fig. 1). Furthermore, because

of hypothesis (d), the distribution of friction coefficients is represented

by (Ref. 2)

C C (l A 11 I

where Cfa is the average value of the friction coefficient over the entire j
length of the body and a is a constant whose typical values are 0 for the

idealized model in which the friction coefficient is constant, 1/5 for the I
turbulent flow model, and 1/2 for the laminar flow model. In the light of

these hypotheses, the aerodynamic drag per unit dynamic pressure becomes(*)

(*)From Sq. (12), it appears that the exponents defining the longitudinal
contour and the distribution of akin-friction coefficients must satisfy the
inequalities m > 1/2 and a < L1
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D 27T R 6 ~C~ta(1 ) ,t
1o) a + o + j2 1

where the dot sign denotes a derivative with respect to the argument 0.

The associated base area is given by

S = fRde (13)

I
I
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3. FORMlATION OF TIM PROBLR

Prior to the formulation of the minimum drag problem, it is convenient

to introduce the dimensionless bane radius

! 2(m-+ i-01) (14)it (14)
P-IA (22--i) U1 • COCfa

as well as the drag parameter and the friction parameter

2)113 ( UL" t) CfaJ(5

2 P 1 fa

Kf m S0 [ 2(z ;+1- Co

the second of which is proportional to the ratio of the cubic root of the

average friction coefficient to the average thickness ratio. After the re-

lationships (12) and (13) are rewritten as(*)

I

()The subscript i denotes the initial point and the subscript f, the
final point.
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f0f 6 2 .2TM Df Jf[ + 2 Voa+ J do

2w. M p 2 do

eif

(16)

and after the end conditions are expressed in the form

j U 09 Of a 2n , a- Pf (17)

I
the problem of minimizing the drag for a given length and base area in

formulated as follows: "In the class of functions p(O) which are consistent

with the isoperimetric constraint (16-2) and the end conditions (17), find

that special function such that the integral (16-1) is minimized".

3le Necessary Conditions

If an undetermined, constant lagrange multiplier is introduced and

the fundamental function is written as (Ref. 3)

F(0, , X)-* 2(18
(+ 2 P + (18

+ 0
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it can be recognized that the previous problem is equivalent to that of

minimizing the integral

I fe F(p, •, X) dO (19)

91

subject to the ieoperimetric constraint (16-2) and the end conditions (17).

Hence, the Euler-lagrange equation is given by

d '0-.. (20)

where

4,4 3~(~ /2] (21) 3

I
Since the fundamental function is formally independent of the argument e,

this Euler-lagrange equation admits the first integral

F- *.c (22)

where C is a constant and where the function # is defined as



( . 2 1 - (23)

This first integral must be solved for boundary conditions consistent with

the traneversality condition

[F . de. + dp =0 (24)

which must be satisfied identically for any system of differentials consistent

with the end conditions (17). Therefore, it implies thatI

(.~) (25)

Incidentally, the solution my or my not involve wular discontinuities

depending on the values of the average friction coefficient, the base area,

the length, and the exponents defining the longitudinal contour and the dis-

tribution of skin-friction coefficients* Should angular discontinuities be

present, the Erdmnn-Weierstrass corner conditions(*)

(*)The symbol 6(.*.) denotes the difference between quantities evaluated
after the corner and before the corner.

I
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a, (.A()M0 (26)

must be satisfied at every corner point. In particular, they imply that

the integration constant C has the same value for every subarc composing

the extremal arc* Finally, the application of the Legendre test indicates

that the following necessary condition must be satisfied everywhere along

the arc minimizing the drag:

(+ + 2)3/2 0 (7)

ýP (P ( ~

3.2. Symmetry and Multiplicity Properties

Inspection of the functions F and I appearing in the first integral

(22) shows that they involve only even powers of p and do not involve the

argument 6 explicitly. This means that, if the function p w p(e) is a par-

ticular solution of the Euler-Lagrange equation, then the functions

p - p(- e) P p- p(O + Const) (28)

are also particular solutions. Eq. (28-1) expresses a synuetam property,

since it allows one to obtain from a given extremal shape an infinite number

of equal-drag shapes by drawing t', mirror image of the original shape with

respect to any arbitrary refert - direction. Eq. (28-2) expresses a
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multiplicity property, since it allows one to obtain from a given extremal

shape an infinite number of equal drag shapes by rotating the original shape

through an arbitrary angle around the z-axis. Furthermore, combined use

of Eqs. (28-1) and (28-2) shows that there exists a class of variational

solutions composed of n identical cycles each of which covers the angular

interval 2yr/n and is symoetric with respect to the radial line joining the

origin of the polar coordinate system with the peak point of the cycle.

Since these special solutions are particularly amenable to an analytical

approach, their properties shall be investigated in Section •i Then, the

more general case is considered in Section 5.

I
I

i



16

4& MULTIPLE AND SYMMETRIC SOLUTIOIS

We shall now restrict the analysis to the class of bodies composed of

n identical cycles; by hypothesis, each cycle involves a pair of symmetric

segments, and each segment does not involve corners* The total number of

segments is 2n; each covers the angular interval r/n and yields the same

contribution to the drag and the enclosed area. Consequently, the integral

to be extremized and the isoperimetric constraint can be rewritten in the

form

279Dxf 2n [Pp +f 2]de

(29)

7 1

where

ei.o, eaf r/n (30) I

and where the terminal radii are unconstrained* Clearly, the minimum drag

problem consists of minimizing the integral j

I f 2nF(O, •, X) dO (31)

subject to the isoperimetric constraint (29-2) and the end conditions (30)

with the following understanding: the object of the minimization procedure
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is to find not only the equation of each segment but also the number of

segments 2n and, hence, the interval of integration AS = i/n.

Concerning the optimization of the shape of each segment, the Euler-

Lagrange equation (20) is still valid and admits the first integral (22).

This first integral must be solved for boundary conditions consistent with

the tranaversality condition (24) which must be satisfied identically for

every system of differentials consistent with the end conditions (30).

Therefore, it implies that

(.) (~) 0 (32)

and that

Fi Ff o C (33)

Furthermore, if the first integral (22) is integrated over the interval Ae

and Eq. (33) is accounted for, one obtains the expression

Fde - 2dS =n C - Ff (34)

9i n

With regard to the optimization of the number of segments, the theorem

of differentiation under the integral sign is applied, that is, the deriva-
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tive of the integral (31) with respect to the parameter n is calculated and

the result is set equal to zero. This operation yields the relationship

fFdO - Ff Z 0 (35)f

which, if combined with Eq. (34), shows that the following integral con-

dition must be satisfied by the optusum contour:

I sde a 0 (36)
9

where, owing to the boundary conditions of the problem, II
0i a *f = 0 (37)

From the last two equations, it appears that some fundamental information I

on the nature of the optiuwn shape can be obtained by investigating the

properties of the function 4 in the p-domain (Fig. 2)o Clearly, I = 0

along the arc composed of the subarc(e)

( h0 (38)

Th lgedre condition (27) shown that Eq. (38) in valid for p !c only*
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ending at p a 1 and the subaro(s)

r(, * 2 + P 2 _ 4 .0 (39)

beginning at p = 1. Furthermore, this function is positive to the left

of the line $ = 0 and negative to the right.

Assuming, then, that the initial point and the final point are arbi-

trarily located on the line # = 0, three classes of bodies must be analyzed

(Fig. 2): (I) bodies with both end points on the line ; = 0, (1I) bodiea

with both end points on the line * a 0, and (III) bodies with the initial

point on the line ; = 0 and the final point on the line + = 0. Mathemati-

cally speaking, these classes are indicated as follows:

Class I: ;i - 0 ;f = 0

Class M: i = 0, *f = 0 (40)

Cle.ss III: M 0

For each class, the following subcases need to be examined: (a) the func-

tion # does not change sign along the integration contour; (b) the function

# does change sign and, therefore, vanishes not only at the end points but

also at some intermediate points; and (c) the function # is zero at every

point between the end points. The following lenmas are of assistance in

finding the solution:

(*)The Legendre condition (27) shows that Eq. (39) is valid for p 2 1 only.
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Lemma l. The function # cannot have a constant, positive or negative,

sign along the integration contour. Should # have a constant sign, the

optimum condition (36) would be violated.

Lesma 2. The integration contour may cross the line s - 0 at either

at one point or at infinite points but not at any intermediate number of

points. Should crossings occur, the first integral (22) and Eq. (39)

would be simultaneously valid at all points of intersection with the impli-

cation that, at these points,

2 C

+ (41)

Now, if the numerator and the denominator of Eq, (41) do not vanish simul-

taneously, Eq. (41) can be satisfied for only one value of P. On the other

hand, if the numerator and the denominator vanich simultaneously, Eq. (41)

is satisfied for any value of p.

Applying the previous lemmas, one can find the extremal solution by

the following exclusion process: for bodies of class I, contour (a) cannot

be extremal because it violates the first lemma; for bodies of class II,

contour (a) cannot be extremal since it violates both le-rns, and contour

(b) cannot be extremal because it violates the second lemma; for bodies of

class III, contour (a) cannot be extremal since it violates the first lerna,

and contour (b) cannot be extremal because it violates the second lemma

In conclusion, the extremal arc must necessarily be of type (c) and, there-

fore, its most general differential equation is
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# a 0 (42)

The particular differential equations associated with the classes of

bodies identified previously are as follows:

Class I: 0=0

Class II: * = 0 (43)

Class III: • -0 0-*'$=0

Regardless of the particular case, the drag parameter, the friction pa-

j rameter, the integration constant, and the Lagrange multiplier satisfy the

relationship

I
K2mC~ (44)

ff

which is obtained by combining Eqs. (18), (29), (34), and (36).

Li.l. Bodies of Class I

The contour of these bodies is governed by the differential equation

(43-1) which admits the general integral

p a C1  (45)

where C1 is a constant. Use of Eqs. (29) supplies the parametric relation-

ships



I
22

aD P(p3 + 2)
(46)

x

which, after the parameter p is eliminated, lead to the following minimum

value for the drag parameter (Fig. 3):

1 + 2K.
K D u f (47)

Kf

I
The associated integration constant and Lagrange multiplier are given by

Kf Kf

From the Legendre condition, one can see that Eqs. (45) through (48) are

valid for p & 1 only, that is, for Kf 2 1. Thus, if one defines Kf - 1 as

the critical value of the friction parameter, the following conclusion is

reached: the extremal arc is a circle for supercritical values of the j
friction parameter. I
4.2. Bodies of Class II

The contour of these bodies is governed by the differential equation

(43-2) whose general integral is
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1 (49)* os(6 + C2 )

where the constant C2 , to be evaluated from the initial conditions, is

given by

* 1 (50)
P' 00 C2

limia tion of the constant from these equations leads to the remslt

p - (51)

coso - i sin *

which represents the straight-line side of a starlike configuration whose

"terminal radii satisfy the relationship

Pf Pi (52)
S005 - - I(p. l - i Ll -•

Cos " 1 n
n ;07 n

In order to determine the initial radius, the isoperimetric condition

(29-2) must be combined with the shape equation (49) to yield
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17 ,?C ,. t nc - C (53)*on 2(9 + C2) 2

This equation, together with Eq. (50), supplies the relationship (Fig. 4)

from which it is clear that, for a given friction parameter, the boundary

value problem does not admit a unique solution but rather an infinite number

of solutions, that is, one initial radius for each integer value of the

number of cycles. The corresponding final radius is presented in Fig. 5 !

versus the friction parameter for several values of the number of cycles.

After the initial radius is eliminated from Eqs. (51) and (54), the

geometry of the optimum shape can be rewritten In the functional form I

P" p(9, Kf, n) (55) 1

which is i•lustrated in Figs. 6 and 7. In Fig. 6, the friction parameter

is held at the constant value Kf a 0.778, and the number of cycles is varied. I
In Fig. 7, the number of cycles is held at the constant value n a ,, and

the friction parameter is variedo

It should be noted that solutions of class II exist if, and only if, the
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relationship (41) is satisfied everywhere. Since this is only possible

for

C o, X -3 (56)

use of Eq. (44) yields the following expression for the minimum drag pa-

rameter (Fig. 3):

1

f

Since this relationship is independent of the number of cycles and the

initial radius, one concludes that all of the extremal solutions correspond-

ing to a given value of the friction parameter have the same drag. Further-

more, because of Eqs. (29-1) and (42-2), each solution is such that the

friction drag is two-thirds of the total drag. Finally, from the Legendre

condition, one can see that Eqs. (49) through (57) are valid for p 2 1 only.

If this statement is combined with the isoperimetric condition (29-2) and

the mean value theorem is applied, one concludes that starlike solutions

of class II are possible for Kf c 1 only, that is, for subcritical values

of the friction parameter.

Polygonal solutions. The present starlike solutions contain polygonal

solutions as a particular case. For oi 1, Eq. (51) reduces to

1•o"" (58)

I0
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which is the equation of the aide of a regular polygon circumscribed on

the circle p a 1. The number of sides (i.e., cycles) of the polygon is

the lowest among all the starlike solutions of class II corresponding to

a given value of the friction parameter and is to be determined from Eq. (54)

which reduces to (Fig. 8)

Kf ()cot n

Clearly, these polygonal solutions are physically realistic only for a dis-

crete set of values of the friction parameter, that is, those values for

which n is an integer. Incidentally, the number of sides increases mono-

tonically with the friction parameter* In particular, for Kf -0. 1, the I
number of sides becomes infinitely large, that is, the extremal solution is

a circle. On the other hand, for Kf '-$ 0, the number of sides tends to two, I
that is, the extremal solution is a flat plate. n

4.3. Bodies of Class III ,

The contour of these bodies is governed by the differential equations

(43-3) and involves two subarce: one is circular and the other is a straight I
line tangent to the circle. Because of continuity considerations, the transi-

tion point from the circle to the straight line is located at p a 1 which

means that, at this point, the two subarca are tangent to one another.

Analytically, the extremal arc is represented by
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p-1 , VO g

(60)
1

P co7s;e --- V !c r /n

where e is the angular interval corresponding to the circular portion. In

particular, the final radius is given by

1 (61)
coo

In order to determine the unknown angle e, the isoperimetric condition

I (29-2) must be combined with the shape equation (60) to obtain (Fig. 9)

I
W de + f / 29ac + tn - (62)

Elimination of the parameter e from the last two equations yields the re-

lationship

Kf 2 . ff/n - (63)
iy/n + 2. 1 - arc tan 2

which supplies the final radius in terms of the friction parameter and the

I
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number of cycles (Fig. 5). For a given friction parameter, the boundary

value problem does not admit a unique solution but rather a finite number

of solutions. The particular solution e a 0 corresponds to a regular polo-

gon and, as such, is governed by Eqs. (58) and (59). The remaining solu-

tions are characterized by a number of cycles less than that of the regular

polygon.

After the parameter e is eliminated from Eqs. (60) and (62), the geometry

of the optimum shape can be rewritten in the functional form (55) which is j
illustrated in Figs. 10 and 7. In Fig. 10, the friction parameter is held

at the constant value Kf = 0.93, and the nymber of cycles is varied. In

Fig. 7, the number of cycles is held at the constant value n a 4, and the

friction parameter is varied. Incidentally, the minimum drag parameter is

still represented by Eq. (57) and is plotted in Fig. 3. Since this re-

lationship is independent of the number of cycles and the final radius, all

of the extremal solutions which correspond to a given value of the friction

parameter have the same drag. Furthermore, each solution is such that the

friction drag is two-thirds of the total drag. Because of the Legendre I
condition, these solutions are valid for p Ž 1 only. If this statement is

combined with the isoperimetric condition (29-2) and the mean value theorem

is applied, one concludes that starlike solutions of class III are possible

for Kf g 1 only, that is, for subcritical values of the friction parameter. I
4.4. Discussion of the Results

From the previous analysis, it is evident that the friction parameter

has a considerable influence on the nature of the extremal solution. If
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one defines Kf= 1 as the critical value of the friction parameter, two

distinct behaviors are possible depending on whether the friction parameter

is supercritical (Kf > 1) or subcritical (Kf < 1). If the friction pa-

rameter is supercritical, the solution is of class I (circular), and the

friction drag contributes more than two-thirds of the total drag. If the

friction parameter is subcritical, the solution is of either class II (star-

like with straight-line segments) or class III (starlike with circular arcs

p 1 alternating with straight-line segments tangent to the circular arcs).

The polygonal solutions are a subset of either class II solutions or

class III solutions which occur only for discrete values of the friction

j parameter*

While the solution is unique in the supercritical case, it is not unique

in the subcritical case. More specifically, for each given value of the

friction parameter, there exists an infinite number of extremal solutions

of class II and class III. However, the solution becomes unique if some

J further constraint is imposed on the problem, that is, the initial radius

for bodies of class II and the final radius for bodies of class III.

The solutions of class II as well as those of class III are characterized

by the same value of the minimum drag; furthermore, the friction drag is

two-thirds of the total drag. Hence, the drag of these solutions is less

than that of the equivalent body of revolution (subscript R), that is, the

body of revolution having equal length and base area (Fig. 3)0 Specifically,

the drag ratio is given by

D 3 (64)

f
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and is plotted in Fig. (U) versus the friction parameter* Clearly, the

drag reduction associated with the use of starlike cross sections is negli-

gible for values of Kf near unity but may be appreciable for values of Kf

near zero. Its magnitude is 5% for Kf = 0.8, 25% for Kf - 0.6, and 57% for

Kf * 0.4.

I
I
I

I
I
I
!
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5. GENERAL SOLUIIONS

The next step in the analysis is to remove the limitations of the

previous section, that is, to find the extremal arc without the restriction

that the solution be necessarily composed of n identical, symetric cycles.

Hence, the problem is to find solutions for the first integral (22) sub-

jected to the end conditions (25) and, in the case where discontinuities

occur, to find the corner conditions (26). While a straightforward analyti-

cal procedure to find the new optimum has not been found, it has been

observed that the differential form (42) of the solution for multiple, sem-

metric bodies is also valid in the most general case. The proof of this

statement lies in the fact that any shape governed by the equation I z 0

satisfies (a) the end conditions (25), (b) the corner conditions (26), and

(c) the first integral (22) providing the fundamental function sati&iLes

the relationshipI
F - C (65)

everywhere along the extremal arc* It can be verified that each of the

three classes of shapes described by Eqs. (43) is consistent with Eq. (65)

providing the integration constant and the lagrange multiplier be defined

by Eqs. (48) in the supercritical case and by Eqs. (56) in the subcritical

case.

In conclusion, if the friction parameter is supercritical. the extremal

solution is still a circle; furthermore, the minimum drag parameter obeys

Eq. (47). On the other hand, if the friction parameter is subcritical, any
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combination of circular arcs p o 1 and straight lines tangent to the circu-

lar arcs is an extremal (see Fig. 12 for some typical examples).; furthermore,

the minimum drag parameter obeys Eq. (57).

In closing, a word of caution is needed with regard to the assumed dis-

tribution of pressure coefficients. Since Newton's law is an empirical

law which was found to be experimentally valid for convex bodies at moderate

hypersonic Mach numbers, the results of this report are satisfactory only I
for the circular solutions, the polygonal solutions, and the starlike so-

lutions of class III. For the starlike solutions of class II, the ac-

ceptability of the results decreases as the concavity of the extremal in- j
creases. Therefore, these qolutions are indicative of trends only; in par-

ticular, the associated aerodynamic drag should be recalculated with more

sophisticated fluid mechanics techniques than those employed here.

I
I

I
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